Devoir de synthèse N°1	http://afimath.jimdo.com/
Ð	Epreuve: Mathématiques
Classe: 4 ^{ème} Math	Durée :3 heures
	Devoir de synthèse Nº1 Classe: 4 ^{ème} Math

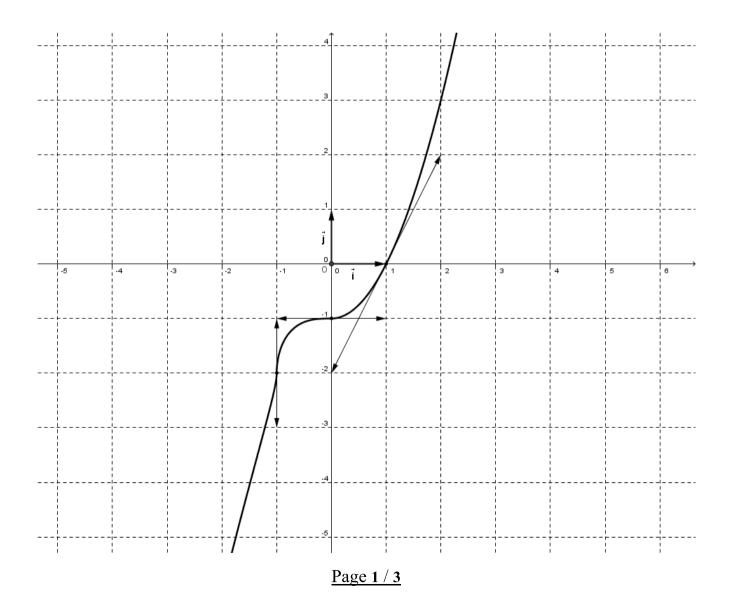
Exercice1: (3 points)

Répondre par vrai ou faux

- a) Soit z un nombre complexe non nul. Si z^3 est un réel alors z est réel
- b) Soient z et z' deux nombres complexes non nuls et de même module, alors z = z' ou z = -z'
- c) L'ensemble des points M d'affixe z dans le plan complexe tel que $\frac{iz+1}{z-1} \in \mathbb{R}$ est le cercle de diamètre [AB]privée de {A,B}où A(1) et B(i)
- d) L'écriture exponentielle de $\frac{i}{1+i\tan\theta}$; $\theta \in \left]\frac{\pi}{2}, \pi\right[$ est $\cos\theta e^{i\left(\frac{\pi}{2}-\theta\right)}$

Exercice 2: (3 points)

Le graphique ci-dessous, représente une fonction f définie sur \mathbb{R} dans un repère orthonormé $(0, \vec{i}, \vec{j})$



- 1) a) f est-elle dérivable en (-1)
 - b) Déterminer $\lim_{x \to (-1)^-} \frac{f(x)+2}{x+1}$ et $\lim_{x \to (-1)^+} \frac{f(x)+2}{x+1}$
- 2) Montrer que f réalise une bijection de \mathbb{R} sur un intervalle K que l'on précisera
- a) Montrer que f⁻¹ est dérivable en (-2)
 b) f⁻¹ est-elle dérivable en 0? Pourquoi ?
 c) Déterminer le domaine de dérivabilité de f⁻¹
 - d) Calculer $(f^{-1})(-2)$; $(f^{-1})(0)$

Exercice 3: (6 points)

Soit la fonction f définie sur] – 1; 1[par f (x) = $-1 + \frac{x}{\sqrt{1-x^2}}$.

On désigne par \mathscr{C} la courbe représentative de f dans un repère orthonormé $(0, \vec{\iota}, \vec{j})$

- 1) a) Dresser le tableau des variation de f.
 - b) Montrer que l'équation f(x) = x admet dans] 1,1[une solution unique α et que $\alpha \in]\frac{4}{5}, 1[$.
- 2) a) Montrer que f réalise une bijection de] 1, 1[sur un intervalle K que l'on précisera.
 - b) Construire \mathscr{C} et \mathscr{C}' la courbe représentative de f^{-1} dans le même repère $(0, \vec{i}, \vec{j})$
 - c) Démontrer que $f^{-1}(x) = \frac{x+1}{\sqrt{(x+1)^2+1}}$ pour tout $x \in K$

3) On considère la suite (u_n) définie par : $\begin{cases} u_0 \in [0, \alpha] \\ u_{n+1} = f^{-1}(u_n) & \forall n \in \mathbb{N} \end{cases}$

- a) Montrer que pour tout $n \in \mathbb{N}$ on a : $u_n \in [0, \alpha]$.
- b) Montrer que pour tout $x \in [0, \alpha]$ on a $|(f^{-1})(x)| \le \frac{1}{2\sqrt{2}}$
- c) Montrer que pour tout $n \in \mathbb{N}$ on a : $|\mathbf{u}_{n+1} \alpha| \leq \frac{1}{2\sqrt{2}} |\mathbf{u}_n \alpha|$
- d) En déduire que (u_n) est convergente et donner sa limite.
- 4) Pour tout x de] 1, 1[; on pose h(x) = f $\left[\cos\left(\frac{\pi}{2}(x+1)\right) \right]$
 - a) Montrer que : pour tout $x \in]-1,1[$ on a $h(x) = -1 + cotan\left(\frac{\pi}{2}(x+1)\right)$
 - b) Montrer que h réalise une bijection de] 1,1[sur $\mathbb R$
 - c) Montrer que h^{-1} est dérivable sur \mathbb{R} et que : $(h^{-1})'(x) = \frac{-2}{\pi[(x+1)^2 + 1]}$

<u>Page 2 / 3</u>

http://afimath.jimdo.com/

Exercice4 : (4 points)

- 1) On rappelle que 2003 est un nombre premier.
 - On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (*E*): 123x + 2003y = 1
 - a) Trouver une solution particulière $(x_0; y_0) de(E)$
 - b) Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (*E*)
 - c) Déterminer un entier k tel que $123k \equiv 1 \pmod{2003}$
 - d) Résoudre dans \mathbb{Z} l'équation $123x \equiv 456 \pmod{2003}$
- 2) Pour fêter l'anniversaire de l'un de ses collègues de travail un groupe composé d'hommes et de femmes a dépensé 50 dinars. Les hommes ont dépensé 5 dinars chacun et les femmes 3 dinars chacune. Combien pouvait-il y avoir d'hommes et de femmes dans le groupe ?

Exercice5: (4 points)

Dans le plan orienté on considère un rectangle direct *ABCD* de centre *O* tel que : AB = 2ADOn pose I = A * B et J = C * D

Soit f une isométrie sans point fixe et qui envoie A en C et I en J

- 1) a) Montrer que f est une symétrie glissante
 - b) Montrer que f(B) = D
- 2) Soit E = f(C)
 - a) Montrer que: $\widehat{CDE} = \frac{\pi}{2}$
 - b) En déduire que D = A * E
- 3) Soit A' le symétrique de A par rapport à B. On pose : $g = t_{BD} \circ S_{(BC)}$
 - a) Déterminer g(B); g(C) et g(A)
 - b) En déduire que f = g
 - c) A l'aide d'une décomposition adéquate de t_{BA} en deux symétries orthogonales, déterminer les éléments caractéristiques de f
- 4) Déterminer toutes les isométries qui laissent globalement invariant le triangle ABE

_____ Bon Travail

Page 3 / 3