AFIF BEN ISMAIL	Devoir de Contrôle	http://afimath.jimdo.com/
Année Scolaire : 2010/2011	N°01	Niveau : 4 ^{éme} Math
Exercice N°1 : (4 pts) A] Dans chacune des questions suivantes, une seule réponse correcte indiquer là.		
1) On considère la suite (V_n) définie sur IN* par $V_n = n \tan\left(\frac{\pi}{2n}\right)$		
a) $\lim V_n = \frac{\pi}{2}$; b) $\lim V_n = \frac{2}{\pi}$; c) $\lim V_n = 1$		
2) On considère la suite (W_n) définie sur IN par $W_n = \sum_{k=0}^n \left(\frac{1}{2}\right)^k$		
a) $\lim W_n = 2$; b) $\lim W_n = +\infty$; c) $\lim W_n = \frac{1}{2}$		
B] Soit f une fonction continue et dérivable sur son domaine de définition, son tableau de variations est le suivant :		
x -∞ -1	0	$+\infty$
$f(\mathbf{x})$		
1) Donner dans chaque cas <u>le nombre</u> de solutions de l'équation :		
f(x) = 0, $f(x) = 10$, 2) Déterminer les limites suivantes :		
$\lim_{x \to 0^+} f(\frac{1}{x}) , \lim_{x \to +\infty} f(\frac{1}{x}) \text{et} \lim_{x \to +\infty} f(1-x^2)$		
Exercice N°2: (6 pts)		
On considère la suite U définie sur IN par : $\begin{cases} U_0 = \frac{1}{2} \\ U_{n+1} = \frac{2U_n}{1 + U_n^2} \end{cases}; n \in IN \end{cases}$		
1) Montrer que : $\frac{1}{2} \le U_n < 1$; $n \in IN$		
 2) a) Etudier la monotonie de la suite U b) En déduire que U est convergente et déterminer sa limite . 		
3) a) Montrer que : $0 < 1 - U_{n+1} \le \frac{2}{5} (1 - U_n)$; $n \in IN$		
b) Déduire que : $0 < 1 - U_n \le \frac{1}{2} \times \left(\frac{2}{5}\right)^n$;	$n \in IN$ puis retrouver la lin	nite de la suite U
4) On pose $S_n = \sum_{k=1}^n U_k$; $V_n = \frac{S_n}{n}$ et $W_n = \frac{S_n}{\sqrt{n}}$; $n \in IN$ *		
a) Montrer que : $n - \frac{1}{3} \left(1 - \left(\frac{2}{5}\right)^n \right) \le S_n < n$; $n \in IN *$		
b) Déterminer alors ; $\lim V_n$ et $\lim W_n$		

Exercice N°3: (4pts)

Soit f la fonction définie sur I =]-∞,1] par :
$$\begin{cases} f(x) = \frac{-1 + \sqrt{1-x}}{x} & \text{si } x \neq 0\\ f(0) = -\frac{1}{2} \end{cases}$$

- 1°) a montrer que f est continue sur I b – Montrer que pour tout x de I on a : $f(x) = \frac{-1}{1 + \sqrt{1 - x}}$
- 2°) a – Montrer que f est strictement décroissante sur I b – Determiner f(I) et f([0,1]).
- 3°) Montrer que l'équation $f(x) = \frac{1}{2}x 1$ admet une unique solution α dans]0,1[
- 4°) Soit g la fonction définie sur l'intervalle $J = \left[-\frac{\pi}{2}, \frac{\pi}{4}\right]$ par : $\begin{cases} g(x) = f(tgx) & \text{si } x \neq -\frac{\pi}{2} \\ g(-\frac{\pi}{2}) = 0 \end{cases}$

Etudier la continuité de g sur J.

Exercice N°4: (6 pts) Dans le plan complexe rapporté a un repère orthonormé (o, \vec{u}, \vec{v}), on donne les points A(-i) et B(i).

So it f l'application de P \ { A } dans P \ { B } qui a tout point M(z) associe le point M '(z') tel que : $z' = \frac{iz+1}{z+i}$ 1°) On suppose $M \neq A$ et $M \neq B$

- - a) Montrer que $(\vec{u}, \vec{OM'}) \equiv \frac{\pi}{2} + (\widehat{MA}, \overline{MB}) [2\pi]$

b) En déduire l'ensemble (\overline{E}) des points M(z) tels que : z' est un réel non nul .

- 2°) Soit dans \mathbb{C} l'équation (F): (i z + 1)³ = (z + i)³
 - a) Montrer que si z est une solution de (F) alors z est réel.

b) Soit $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Donner la forme exponentielle du nombre complexe $\left(\frac{1+itg\alpha}{i+ta\alpha}\right)$. En déduire les valeurs de $\alpha \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$ tels que tg α soit une solution de (F).

3°) Soit θ un réel de l'intervalle]0, 2π [

- a) Résoudre dans \mathbb{C} l'équation : $z^2 2iz + 2ie^{i\theta} e^{2i\theta} = 0$
 - b) On désigne par M₁ et M₂ les points d'affixe respectives $z_1 = e^{i\theta}$ et $z_2 = 2i e^{i\theta}$ i) Montrer que M₁ et M₂ sont symétriques par rapport a un point fixe que l'on précisera . ii) trouver l'ensemble (Γ) décrit par M₁ et M₂ lorsque θ varie. iii) Montrer que (M_1M_2)² = 8 (1 - sin θ). Déduire la valeur de θ pour laquelle la distance M_1M_2 est maximale

http://afimath.jimdo.com/