http://afimath.jimdo.com/

Exercise 1

Déterminez une primitive de f sur I dans chacun des cas suivants :

1)
$$f(x) = 10x^5 - 2x + 3$$
; $I = \mathbb{R}$

2)
$$f(x) = 1 - \frac{2}{x^2}$$
; $I = \mathbb{R}^*$

$$3)f(x) = \frac{3x}{(x^2 + 1)^3}; I = \mathbb{R}$$

4)
$$f(x) = \frac{2x}{\sqrt{x^2 - 1}}$$
; $I =]1$; $+\infty[$

5)
$$f(x) = \frac{x^4 - 4x^2 - 2}{x^2}$$
; $I =]0; +\infty[$

6)
$$f(x) = \frac{3x^2}{\sqrt{x^3 - 1}}$$
; $I =]1; +\infty[$

7)
$$f(x) = -1 + \frac{3}{x^2}$$
; $I =]0; +\infty[$

8)
$$f(x) = \frac{5}{7\sqrt{3x-1}} - 4$$
, $I = \left[\frac{1}{3} ; +\infty \right]$

9)
$$f(x) = \frac{3}{(2x-4)^3} + \frac{1}{4(5-x)^7}$$
, $I=] 2; 5[$

10)
$$f(x) = \frac{x^2 + x}{(2x^3 + 3x^2)^4}$$
, $I=]0$; $+\infty$

11)
$$f(x) = \frac{5x^4 + 2x^3 - 4x + 1}{x^3}$$
, $I =]0$; $+\infty$

12)
$$f(x) = \frac{2}{\cos^2 x} + \sin x$$
; $I = \left[-\frac{\pi}{2}; +\frac{\pi}{2} \right]$

13)
$$f(x) = \frac{1}{\cos^2 x} + \cos x$$
; $I = \left[-\frac{\pi}{2}; +\frac{\pi}{2} \right]$

Exercise 2

1. Montrer que pour tout réel $x \cos^2 x = \frac{1 + \cos(2x)}{2}$. En déduire une primitive sur \mathbb{R} de la fonction

 $f: x \mapsto \cos^2 x$

2. En utilisant la question 1. montrer que pour tout $\cos^4 x = \frac{\cos(4x) + 4\cos(2x) + 3}{8}$. En déduire une primitive sur \mathbb{R} de la fonction $g: x \mapsto \cos^4 x$

3. Montrer que pour tout x, $\cos^3 x = \cos x - \cos x \sin^2 x$. En déduire une primitive sur \mathbb{R} de la fonction $h: x \mapsto \cos^3 x$

Exercise 3

Soit F une fonction définie et dérivable sur $\mathbb R$ telle que F(0)=0 et dont la dérivée est donnée par $F'(x)=\frac{1}{x^2+1}$, pour tout x de $\mathbb R$. On suppose que cette fonction existe et on ne cherchera pas à donner une expression de F(x). (C) est la courbe représentative de F dans un repère orthonormal $\left(O;\vec{i},\vec{j}\right)$.

- 1. Soit G, définie sur \mathbb{R} , par G(x) = F(x) + F(-x).
- a. Montrer que G est dérivable sur \mathbb{R} et calculer G'(x).
- b. Calculer G(0) et en déduire que F est une fonction impaire.
- 2. Soit *H* définie sur]0; $+\infty$ [par $H(x) = F(x) + F(\frac{1}{x})$.
- a. Montrer que H est dérivable sur]0; $+\infty$ [et calculer H'(x).
- b. Montrer que, pour tout x élément de] 0; $+\infty$ [, H(x) = 2F(1).
- c. En déduire que $\lim_{x \to +\infty} F(x) = 2F(1)$.
- d. Qu'en déduit-on pour la courbe (C)?

- 3. a. Démontrer que, pour tout x élément de [0;1], $\frac{1}{2} \le F'(x) \le 1$. En déduire que $\frac{1}{2} \le F(1) F(0) \le 1$ puis une valeur approchée de F(1). Quelle est la précision de cette approximation ?
- b. Soit T la fonction définie sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ par $T(x) = F(\tan x) x$. Démontrer que T est une fonction constante sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$. En déduire la valeur exacte de F(1).
- 4. Dresser le tableau de variation de F sur \mathbb{R} . Tracer la courbe (C), ses asymptotes et ses tangentes aux points d'abscisses -1, 0 et 1. Unités graphiques : 2 cm sur (0x) et 4 cm sur (0y). On prendra F(1) = 0.78.

http://afimath.jimdo.com/