Suites réelles

Exercice 1: Soit (U_n) une suite arithmétique à termes strictement positifs.

$$\text{Montrer que pour tout } n \in \mathbb{N}^* \ , \ \frac{1}{\sqrt{U_0} + \sqrt{U_1}} + \frac{1}{\sqrt{U_1} + \sqrt{U_2}} + \dots + \frac{1}{\sqrt{U_{n-1}} + \sqrt{U_n}} = \frac{n}{\sqrt{U_0} + \sqrt{U_n}} \, .$$

Exercice 2:

Conjecturer une expression de U_n en fonction de n, puis démontrer la propriété ainsi conjecturée.

1.
$$U_0 = 1$$
 et pour tout $n \in \mathbb{N}$, $U_{n+1} = \frac{U_n}{1 + U_n}$.

2.
$$U_0$$
 = 1 et pour tout $n \in \mathbb{N}$, U_{n+1} = U_n + 2n + 3 .

3.
$$U_0$$
 = 1 et pour tout $n \in \, \mathbb{N}$, $\, U_{n+1} = \frac{U_n}{\sqrt{1 + U_n^{\,\, 2}}} \, .$

4.
$$U_0 = 1$$
 et pour tout $n \in \mathbb{N}$, $U_{n+1} = \frac{U_n}{\sqrt{2 + U_n^2}}$.

5.
$$U_0 = 0$$
 et pour tout $n \in \mathbb{N}$, $U_{n+1} = \sqrt{1 + \frac{U_n^2}{2}}$.

Exercice 3:

On donne le tableau de variation d'une fonction f.

X	1	5
f'(x)	+	
f	2	4

- 1. Soit la suite définie par : $U_0 = 1$ et pour tout $n \in \mathbb{N}$, $U_{n+1} = f(U_n)$.
 - a. Montrer que pour tout $n \in \mathbb{N}$, $1 \le U_n \le 5$.
 - b. Montrer que (U_n) est croissante.
- 2. Soit la suite définie par : $V_0=5$ et pour tout $n\in\,\mathbb{N}$, $V_{n+1}=f(V_n).$
 - a. Montrer que pour tout $n \in \, \mathbb{N}$, $1 \leq V_n \leq 5$.
 - b. Montrer que (V_n) est décroissante.

Exercice 4:

Soit (U_n) la suite définie sur \mathbb{N} par $U_0=1$ et pour tout $n\in\mathbb{N}$ $U_{n+1}=\frac{U_n}{1+U_n^2}$.

- 1.a. Montrer que pour tout $n \in \mathbb{N}$, $U_n \succ 0$.
- b. Montrer que (U_n) est monotone. En déduire que (U_n) est convergente et préciser sa limite.
- 2.a. Pour tout entier p, exprimer $\frac{1}{U_{p+1}^2} \frac{1}{U_p^2}$ en foction de U_p^2 .
- $\text{b. En d\'eduire que pour tout } n \in \mathbb{N}^*, \ \sum_{p=0}^{n-1} \big(\frac{1}{U_{p+1}^2} \frac{1}{U_p^2}\,\big) = 2n + \sum_{p=0}^{n-1} U_p^2 \ \text{puis que } \frac{1}{U_n^2} = 1 + 2n + \sum_{p=0}^{n-1} U_p^2 \ .$
- c. Montrer que pour tout $n \in \, \mathbb{N}^*, \,\, U_n \leq \frac{1}{\sqrt{2n+1}} \,\,$ et retrouver $\lim_{n \to +\infty} U_n$.

Exercice 5:

Soit f la fonction définie sur $[2,+\infty[$ par : $f(x) = \frac{x^2}{2x-2}$.

- 1. Etudier le sens de variation de f sur $[2, +\infty]$.
- 2. On considère la suite définie par : $U_0 = 4$ et pour tout $n \in \mathbb{N}$, $U_{n+1} = f(U_n)$.
 - a. Montrer que pour tout $n \in \mathbb{N}$, $U_n \ge 2$.
 - b. Montrer que (Un) est monotone. En déduire que (Un) est convergente et préciser sa limite.
- 3.a. Montrer que pour tout $n \in \mathbb{N}$, $U_{n+1} 2 \le \frac{1}{2}(U_n 2)$.
 - b. En déduire que pour tout $n\in\mathbb{N}$, $U_n-2\leq (\frac{1}{2})^{n-1}$. Retrouver $\lim_{n\to +\infty}U_n$.
- 4. Montrer que pour tout $n \in \mathbb{N}$, $U_n = \frac{2}{1 (\frac{1}{2})^{2^n}}$.

Exercice 6:

On considère les suites (U_n) et (V_n) définies sur $\,\mathbb{N}\,$ par les relations :

$$\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{u_n + v_n}{2} \end{cases} \text{ et } \begin{cases} v_0 = 4 \\ v_{n+1} = \frac{u_{n+1} + v_n}{2} \end{cases}.$$

- 1. Calculer u_1, v_1, u_2, v_3 .
- 2. Soit la suite (w_n) définie pour tout entier naturel n par $w_n = v_n u_n$.
- a. Montrer que la suite (wn) est une suite géométrique .
- b. Exprimer w_n en fonction de n et préciser la limite de la suite (w_n).
- 3. Montrer que les deux suites (Un) et (Vn), sont adjacentes. Que peut-on en déduire ?
- 4. On considère à présent la suite (t_n) définie, pour tout entier naturel n, par $t_n = \frac{u_n + 2v_n}{3}$.
- a. Démontrer que la suite (tn) est constante.
- b. En déduire la limite des suites (U_n) et (V_n).

Exercice 7:

Soit (U_n) la suite définie sur \mathbb{N}^* par : U₁ = 2 et pour tout $n \in \mathbb{N}^*$, U_{n+1} = 2 + $\frac{n^2}{U_n}$

- 1.a. Montrer que pour tout $n \in \mathbb{N}^* \setminus \{1\}$, $n \prec U_n \prec n+1$.
- b. Montrer que (U_n) est croissante.
- 2. Soit $(V_n)_{n \in \mathbb{N}^*}$ la suite définie par $V_n = \frac{1}{U_n n} 1$.
 - a. Montrer que pour tout $n \in \mathbb{N}^*$, $V_{n+1} = \frac{1}{V_n + \frac{1}{n}}$.
 - b. Montrer que pour tout $n \in \mathbb{N}^*$, $1 \frac{1}{n} \le V_n \le 1$.
 - c. Déterminer $\lim_{n \to +\infty} V_n$ et $\lim_{n \to +\infty} (U_n n)$.
- 3. Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \frac{1}{n} \sum_{p=1}^n p V_p$.
 - a. Montrer que pour tout $n \in \mathbb{N}^*$, $S_n \frac{n+1}{2n} = \frac{1}{n^2} \sum_{p=1}^n p(V_p 1)$.
 - b. En déduire que pour tout $n \in \mathbb{N}^*$, $\frac{1}{2} \frac{1}{2n} \le S_n \le \frac{1}{2} + \frac{3}{2n}$
 - c. Montrer que (S_n) est convergente et préciser sa limite .